@ Rensselaer|'455ch9et The@Rensselaer IDEA

Institute for Data Exploration and Applications

Triaging Software Bugs!

Background

It is not unusual for large software projects to track hundreds of thousands of bugs
over time. The Mozilla defect tracking dataset, for example, contains over 150,000
bugs reported. Bugs cause software to produce incorrect or unexpected results, and
behave in unintended ways. The annual cost of software bugs is estimated at $59.5
billion2.

Bugs are assigned to developers through a process known as bug triaging. Bug
triaging involves reviewing bugs with the goal of prioritizing development work
towards fixing the underlying defects3. Some bugs are prioritized for immediate
attention while others are carried over to future releases of the software. While
prioritization is done using several factors, the success of the triaging process
depends on whether the bugs prioritized for fixing are actually fixed or not.

Bug triaging is labor-intensive and time consuming if done manually. A better
understanding of which bugs get fixed can inform the design of improved triaging
policies for bug management as well as help developers be more productive and
efficient in spending their time on bugs. It can also help set user expectations when
they first report a bug. Bugs that are highly unlikely to be fixed can be flagged or just
closed and users advised of appropriate workarounds.

Bug Reports

When a software bug is reported (by developers, QA engineers, product managers,
customer support, or even end users) it is assigned to a developer to be fixed*. Once
the bug is assigned, the developer will work on it and will add commentary as
he/she makes progress. Other comments can be logged during this time as well,
from design discussions, QA notes, software reviews, etc. Over its lifetime, a bug will
transition through various states and can even move between different developers

1 This case was prepared by Mr. Sandeep Sikka in collaboration with Dr. Dorit Nevo from the Lally School of
Management. Mr. Sikka is a data scientist and software engineer with over 15 years of experience. He holds an
M. S. in Computer Science from Washington University and a B. Tech in Computer Science from Indian Institute
of Technology. Dr. Nevo is an Associate Professor of Information Systems and director of the MS program in
Business Analytics. We also thank Mr. Majeed Simaan from the Lally School of Managemetn for his help with this
case.

2p Bhattacharya and [Neamtiu, “Fine-grained incremental learning and multi-feature tossing graphs to improve
bug triaging”, Software Maintenance (ICSM) 2010 (ieeexplore.ieee.org)
3 PJ Guo, T Zimmermann, N Nagappan and B Murphy. “Characterizing and Predicting Which Bugs Get Fixed: An

Empirical Study of Microsoft Windows”, Proceedings of the 32th International Conference on Software
Engineering (ICSE 2010), Cape Town, South Africa, May 2010

4 An example of a bug report for Mozilla: https://bugzilla.mozilla.org/show_bug.cgi?id=100009

@ Rensselaer|'455ch9et The@Rensselaer IDEA

Institute for Data Exploration and Applications

or departments (i.e. get reassigned) until it is resolved. Naturally, this process
generates much data that can be captured and analyzed to gain insights on bug
resolution.

In this case we will use The Eclipse and Mozilla Defect Tracking Dataset®
(https://github.com /ansymo/msr2013-bug dataset), which contains bug reports
for Eclipse and Mozilla. Given the limited time frame, we will focus on the Eclipse
subset, which includes the following four products: Eclipse Platform, which
supports other development tools, the Java Development Tools (JDT), C/C++
Development Tools (CDT) and Plug-in Development Environment (PDE). The file
structure within this dataset is shown below:

Report
; Report Update
Product 1_«|bugid o —*| Attribute |le——{when
name opening_time name what
reporter

Source: Lamkanfi et al. (2013); Note that * means a one-to-many relationship

That is, for each product there is a list of bug reports (with reporter and opening
time) and a set of report attributes. The following attributes are included in the
dataset:

e priority: indicates how soon the bug should be fixed. Varies between P1
(highest priority) and P5 (lowest priority).

* severity: an indication of the impact of the bug on the software system.
Values include: trivial, minor, normal, major, critical and blocker.

* product: the specific software application the bug is related to.

* component: the relevant subsystem of the product for the reported bug (can
be more than one).

* bug status: the current state of a bug. Values include: unconfirmed, new,
assigned, reopened, ready, resolved, verified.

* resolution: what happened to the bug. Values include: fixed, invalid, wontfix,
duplicate, worksforme, incomplete.

* assigned_to: an identifier field for the developer who got assigned the bug.

* cc: literally a cc field, indicating users who are interested in the progress of
this bug.

* short_desc: a one-line summary describing the bug.

* version: the version of the product the bug was found in.

* op_sys: the operating system against which the bug is reported.

5 A Lamkanfi,] Perez and S Demeyer, “The Eclipse and Mozilla Defect Tracking Dataset: a Genuine Dataset for
Mining Bug Information”, MSR '13: Proceedings of the 10th Working Conference on Mining Software Repositories,
May 18--19, 2013. For the original data please visit: https://github.com/ansymo/msr2013-bug_dataset

@ Rensselaer| 45xschiegt The

Institut or Data Exploration and Applications
Your task
This link contains the dataset for bugs reported for the Eclipse browser to be used in

this competition:
https://www.dropbox.com/s/zcplu69qwiub880/Eclipse.zip?dl=0

The zipped directory contains twelve csv files corresponding to the above listed
attributes. Each file contains a list of updates and changes that have been performed
during the bug’s lifetime. Each update is indicated using a UNIX timestamp (when),
the new value of the attribute of the bug report (what), the reporter (who), and the
bug (id). Two report attributes are unchangeable: the reporter and the opening time
of the reported bug. They are included in the ‘reports.csv’ file.

Note that the file titled “cc.csv” needs to be reformatted as some of the records
shifted.

Your task is to explore the Eclipse defect tracking dataset and to develop insight into
the factors that affect the likelihood of a bug being fixed. With this understanding,
you are asked to develop a prediction model for which bugs would be fixed. You can
use any software and modeling approach to develop this prediction. Please work
only on the Eclipse dataset and refrain from using any other external sources such as
Websites, blogs, articles, etc.

To get you started, below are some examples of factors you may wish to consider in
your model (these are not readily available in the data, you need to compute them):

1. How does the past success rate of a bug assignee impact the likelihood of a
bug being fixed?

2. What influence does the reputation of a bug reporter and the success rate of
their past bug reports have on the likelihood of a bug being fixed?

3. How do bug report edits and the editors making those edits influence
whether a bug is fixed or not?

4. What impact do bug reassignments have on the likelihood of a bug being

fixed?

Do bug re-openings influence the bug fix likelihood?

How does the time a bug has been open influence bug fix likelihood?

7. How does the software module that a bug gets assigned to impact the
likelihood of a bug being fixed?

8. Do social relationships between the various bug participants on current and
past bugs influence the likelihood of a bug being fixed?

9. How does the age of the software version the bug is being reported on impact
the bug fix likelihood?

AN

@ Rensselaer| 44rschiogs The

Institute for Data Exploration and Applications

10. Does the nature of the bug (e.g.: a) user interface, b) end user environment
concerns, c) network flakiness) influence the likelihood of a bug being fixed?

Deliverables
You are expected to provide the following:

(1) Model predictions on hold-out data set: Run your model on a hold-out dataset
and submit a file containing bug IDs and you prediction for each bug.

(2) Presentation: a 10 minutes presentation of your exploratory work and insights
leading to the creation of your model. Your presentations should include: (1)
explanation of the problem and dataset, (2) discussion of the exploratory work
and creation of prediction variables, (3) explanation of the logic of solution
approach.

